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ABSTRACT
We determine the braid group action on generating systems of a group that
is the semi-direct product of a finite vector space with a group of scalars.
This leads to Galois realizations of certain groups GLx(q) and PUx(q).

Introduction

A new criterion for realizing groups as Galois groups was given in [V1]. This
criterion involves a transitivity condition for the braid group action on certain
generating systems of a finite group G. If this condition and others are satisfied,
then a certain subgroup of Aut{G) occurs as a Galois group over the rationals Q
(even as Galois group of a regular extension of Q(z)).

The criterion was applied in [V1] to a group G that is the semi-direct product
of a finite vector space V = F; with a group Z of scalars. As a result, the
group GL,(q) was realized as Galois group over Q for certain values of n and g.
All conditions from the criterion but the braid group transitivity were easy to
check. For this transitivity, one needs to determine the subgroup A; of GL,(q)
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generated by certain explicit matrices (coming from the elementary braids). Even
though stronger than necessary conditions on ¢ and n were imposed (essentially
n 2> 3¢) to keep this group-theoretic problem manageable, its solution occupied
much of the paper [V1].

The present paper contains a more systematic study of the above group-
theoretic situation. The original goal was to find the exact conditions on ¢ and
n under which the above criterion would realize GL,.(¢) over Q. It was expected
that the group A¢ would usually contain SL.(g), with one known exception in
the case that ¢ = p is a prime (and Z =< —1 >). This exceptional case yields
A¢ = Spa(p) (the symplectic group).

Surprisingly, it turned out that A, is a unitary group in many cases. This
will lead to Galois realizations of certain unitary groups. The necessary group-
theoretic work is contained in the present paper. However, one also needs a
modification of the above criterion. Since this requires methods quite different
from those of the present paper, it will be developed in later work.

Theorem 1 of the present paper gives the classification of the groups A¢ that
arise from the braid group action. The proof is given in part 1 of the paper. Im-
portant steps are to show that A¢ is irreducible (§1.3), and to construct invariant
bilinear and hermitian forms (§1.4). The proof is then completed by appealing
to a result of Wagner [Wa] that classifies primitive linear groups containing non-
involutory homologies.

In part 2 we apply Theorem 1 to give Galois realizations for certain groups
GL,(g) and PU,(g). This is based on the criterion from [V1}], and on an extended

version of this criterion (to appear in [V2]).

§1. Classifying the groups A,

§1.1. NIELSEN CLASSES AND BRAID GROUP ACTION.

Fix an integer r > 3. Let G be a finite group. Let & denote the set of r-
tuples (g1,...,9r) € G” with the following properties: g; ---g, = 1, the group G
is generated by g1, ..., ¢r, and g; # 1 for all 7.

The free group Fy—; on generators Q1,...,Q@r-1 acts on & by the following
rule: The element Q; (1 < ¢ <r —1) sends (91,...,9r) to

(1) (1, oor Gik 1, T3 1 9iGi4 15 001 Gr)-
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We let F,_; act from the right, so Q;Q; acts by first applying Q;, then @;.
One checks easily that the elements Q;Qi+1 Qi and Q;4+1Q:@Qi+1 induce the same
transformation of &, (for i = 1,...,r — 2); same for the elements Q;Q; and Q;Q;
with |i — j| > 2. Hence the action of F,_; induces an action of the Artin braid
group B, on &, where B, is the quotient of F,_; by the above relations. From
now on we work only in B, and let the @;’s denote the corresponding generators
of B,.

Let C = (Cy,...,C;) be an r-tuple of conjugacy classes of G. We let £(C)
be the set of all (¢1,...,9-) € & with g; € C; for all i. Further, the Nielsen
class Ni(C) is defined to be the set of all (¢1,...,9,) € & for which there is a
permutation 7 € S, with g,(;) € C; for all s.

Clearly, the set Ni(C) is invariant under the above action of B;. Each element
Q € B, sends the set £(C) to £(*(? C), where « : B, — S, is the (surjective)
homomorphism sending @; to the transposition (i,2+1). In particular, the kernel
B of the map « : B, —» S, - called the pure braid group - fixes the set
E(C).

§1.2. BRAID GROUP ACTION THROUGH THE MATRICES ®(@Q, ().

Fix an integer n > 2 and set r = n + 2. Let ¢ be a power of the prime p, and
let Fy be the finite field with ¢ elements. Let Z =< #;,...,n, > be a subgroup
of the multiplicative group F;, where 7;...n, = 1 and n; # 1 for all 7. Assume
further Fg = Fp(n1, ... r).

In the following, (,...,{, will always be some permutation of ny,...,7,. Set
C=1(Cry-rCr)s 1 =M, s0r)- B (C1yoe0sGr) = (1)) o> M(r)) With 7 € Sy, then
we write ( = "y for short.

Let V be the elementary abelian group Fy. Let G =V x*Z be the semi-direct
product of V and Z (where Z acts on V' via scalar multiplication). We write the
elements of G as pairs [v,z] withv € V, 2 € Z. Fori =1, ...,r, let C((;) be the
conjugacy class of G consisting of all [v,(i], v € V. Set C¢ E(C(G1), ..., C((r)),
and £(¢) = £(C¢) (see §1.1 for notation).

LEMMA 1: Each element of £(() is conjugate under V' to exactly one element of
the form

(*) ([07<1]7[01,<2],"-a[vn+1aCr])a v €V.

Define Ay,...,An € Z by setting A; = C;‘l ~--(,:_,1_1. Then an element of the
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form (*) lies in €(() if and only if vy,...,v, is an Fy-basis of V, and vp41 =
—A101 — o — Aptp.

The proof of the lemma is straightforward (details omitted).

For each matrix B € GL,(g) and each permutation ( of 1, let F(B,() denote
the element of the form (*), where vy, ..., v, are the column vectors of the matrix
B, and v, 4 is given in terms of vy, ..., v, and ¢ as in the Lemma. Note that from
the definitions in §1.1, the set Ni(C,) is the union of the sets £((), as { runs over
the permutations of 5. It follows that each element of Ni(C,) is V-conjugate
to exactly one element of the form F(B,(). This yields a 1-1 correspondence
between the quotient Ni(C,}/V and the set of pairs (B, (), where B € GLn(g),
and ¢ is any permutation of 7.

Thus the action of the braid group B, on Ni(C,)/V (via (1)) induces an action
on the set of pairs (B,(). Denote this action by (B,¢) — (B,¢)? (Q € B,).
Let ey, ..., €, be the standard basis of V = IFZ' (i.e., € is the vector with entries

1,0,...,0 etc.). Straightforward computations yield:

LEMMA 2: Fori=1,...,r — 1, and for each pair (B, () as above, we have
(B,O)¥ = (B &:i¢),*¢)

where (i,1 + 1) is the transposition switching i and ¢ + 1, and ®;(¢) € GLn(q) is
the following matrix:
(a) Fori = 2,...,n, the matrix ®;() has j-th column e; for j € {i,i — 1}, has
(i — 1)-st column e; and i-th column C,-;_llc,-_l + (,-'_'._11((,- —1e;.
(b) The matrix &(¢) has first column (' ((z —1)~*(1— ¢1)e1 and j-th column
(-1 =)+ ¢ forj=2,..,n.
(c) The matrix ®,41({) has j-th columne; for j = 1,...,n—1, and n-th column

—Aie; — -+ — Apen with Ay, ..., A, as in Lemma 1.

Recalling that the elements of B, act from the right, we get
) (B,()¥% = (B &;(¢) &;("HY¢), G (Uitlley),

In general, since the Q;’s generate By, it follows that for each @ € B, and for
each ( there is unique ®(Q,¢) € GLn(q) such that

@) (B,0% = (B#Q,),"9¢
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for all B € GLn(q). Thereby « : B, — S, is the natural surjection from §1.1
(sending Q: to the transposition (7,7 + 1)).
We get the rules:

)  2QQ,0)=%(Q,0) &(Q,"D¢), Q1,¢)=28Q, D¢,

() 2(QR'Q7,¢) = 2(Q,¢) #(Q',"¥¢) 2(Q,0)7,

Let B.(¢) be the group of all Q € B, with *(9¢ = (. The group B,(() is the
stabilizer in B, of the set £(() (see (3) ), and it contains the pure braid group
B = ker(x). Each Q € B({) sends the pair (B,() to (B ®(Q,¢),() (see (3)).
Hence the map @ : B-({) — GLx(¢) sending Q to (@, () is a homomorphism.
The image of this homomorphism is a subgroup of GL,,(¢) that we denote by A¢.
We clearly have :

COROLLARY 1: The braid group B, acts transitively on the set Ni(C,)/V (via
(1)) if and only if A¢ = GL.(q).

If these equivalent conditions hold, and ( is rational (see §2), then by [V1]
the group GLx(g) (= A¢) is a Galois group over Q(z). (Without the rationality
condition, we get it only as a Galois group over Q,,(x)). But we also get Galois
realizations for A (or some related groups) in certain cases when it is a proper
subgroup of GL.(g) (see §2).

Before we can go further with this, we need a classification of the groups A¢.
This is given in the following theorem. Thereby, we view V = F;’ as [ -vector
space of column vectors, on which the group GL,(q) acts by left multiplication;

and q is a power of the prime p.

THEOREM 1: Let (1,...,{, be generators of the finite field F, satisfying
Ci---¢ =1and ¢ # 1 foralli. Set ( = ((1,..,¢) and n = r — 2. Sup-
pose n > 2. Let A be the image of the homomorphism ®¢ : B-(() — GLx(g).
Then A¢ acts absolutely irreducibly on V = Fy. Furthermore:

(a) A¢ leaves a non-zero bilinear form on V invariant if and only if ¢ = p is

a prime, n is even and ( = (-1, ...,—1). In this case,

AC = Sl)n(p)'
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(b) A¢ leaves a non-zero hermitian form on V invariant if and only if ¢ = ¢2

is a square and all {; have norm 1 over Fy,. In this case,

SUn(q) S AC < U“(q)

with possible exceptions (E1)~(E4) below.
(¢) If¢isnot asin (a)or (b), and if n > 2, then

SL,,(Q) < A( < GL,,((])

with exceptions (E3) and (E4).

Let A¢ denote the image of A in PGLy,(q).

(d) IKn =2 then A is (conjugate to) PSLy(go) or PGL2(go), ¢ € {g0,42},

with exceptions (E1) and (E2).

The exceptional cases are as follows:

(E1) n=2and({=(tt,—t"1,—t"!) (up to permutation) with t* # 1. In this
case, A¢ is dihedral of order 2m, with m prime to q.

(E2) n=2 and A¢= Ay,Ssor As. If p > 5 then (i(j # 1 for all i # j.

(E3) n=3,p>3and (= (—¢—~¢,—€—¢€e ') withe® =1 (up to permuta-
tion). In this case, A; = PUz(4) = F2x*SLy(3).

(E4) n=4,p>3and (= (—¢,—¢ —¢,~¢,—¢,—¢) withe* =1, e # 1. In this
case, A; = PSU,(4) = PSp4(3).

Thereby Spa(g) (resp., Un(q)) denotes the invariance group in GLn(g) of a
non-degenerate symplectic (resp., hermitian) form on V. And SU,(g) is the
intersection of U,(g) and SL.(q).

Remark 1: The case n =2

I ¢ =(tt,t,t) with t* =1, but t2 # 1, then case (E3) occurs with type Ss. If
¢ =(s,8,8,—1) with s3 = —1, but s # —1, then case (E3) occurs with type A4.
Further, to compare (a), (b) with (d) note the isomorphisms SUj(gZ) = SL2(go)
and Spa(g) = SLa(g).

Remark 2: The groups in (E3) and (E4) were classically studied in low-dimensio-
nal linear group theory (e.g., [Mi], and the remarks in [Wa}; the group in (E4)
belongs to the 27 lines on a cubic surface). It will be interesting to explore their
Galois-theoretic significance.

The proof of Theorem 1 occupies the rest of §1. The idea is to apply a theorem

of Wagner [Wa] that classifies primitive linear groups containing non-involutory
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homologies. In §1.3 we prove that A¢ is primitive, and in §1.4 we construct the
invariant bilinear resp. hermitian form.

For the rest of §1, we assume that {, n and ¢ satisfy the hypothesis of Theorem
1. Instead of A¢ we write A, for short.

§1.3. A IS IRREDUCIBLE.
Fori =1,...,n+1wehave Q? € B™ c B.(¢). Hence the matrix B; = &(Q?,()
lies in A. By (4) we have

Bi = ®;(¢) &:(11¢).

Let T be the subgroup of A generated by the matrices By, ..., B,. The goal of

this section is to prove:
PROPOSITION 1: T and A act absolutely irreducibly in the F-vector space V.

From now on we consider V = F ;' as F,-vector space of column vectors, on
which the matrix group GL,(q) acts by left multiplication. For elements v, w, ...
of V we let < v,w,... > denote the subspace spanned by these elements. Call
an element P # 1 of GL,{q) a perspectivity if it fixes a hyperplane of V
elementwise. This hyperplane is then called the axis of P, and the 1-dimensional
space Im(P — 1) is called the center of P.

Recall that an irreducible subgroup of GL,(q) that contains a perspectivity is
absolutely irreducible (see e.g., [Wa, Lemma 2.1]). Since the B;’s are perspectiv-
ities by the following Lemma, Proposition 1 follows once we have shown that T'
is irreducible.

From Lemma 2 one computes that the matrices B; have the following form:

LEMMA 3: B, is a perspectivity that acts with eigenvalue {; 1(‘-111 on its center
(fori =1,...,n + 1). More precisely:
(a) Fori = 2,...,n the matrix B; has j-th column ej for j ¢ {i,i — 1}, has

(¢ — 1)-st column
CRleimr + CEA(G = 1)es
and has i-th column
(M= e + (1= G3h + (GG e
Thus B; is a perspectivity with center spanned by

(T—Cixr)eicr + (Ci—1) e
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and with axis spanned by the ej with j & {i,i— 1} together with the vector
ei-t + Giei
(b) The matrix B, has first column (;(;'e; and j-th column

A= Gvr)er +ey

for j = 2,...,n. Thus B, is a perspectivity with center < e; >.
(c) The matrix B,y has j-th column e; for j = 1,..,n — 1, and has n-th

column

(1=Cot1) (Grer + Glrez + oo 4 Colucy €nm1) + CoprCinta €ns

Thus B4 is a perspectivity with axis < ej,...,€5—_1 >.
LEMMA 4: B;_; does not fix the center of B; for i = 2,...,n.

Proof: For 3 <1< nitis clear from Lemma 3 that B;_; does not fix the center
of B;.

It remains to show that B; does not fix the center of B;. From Lemma 3(a)
we see that the center of B; is spanned by the vector

w= (1-0G)er + (2—1) e

Clearly < w > cannot equal the center < e; > of B,. Hence if the perspectivity
B fixes the 1-space < w >, then < w > must lie on the axis of By, i.e., Bjw = w.

This equation Bjw = w is equivalent to:

G -G) + GTA=G) (G—1) = (1-G).

This simplifies to
G'-1)(G-1) =0

This contradiction concludes the proof of Lemma 5. |

def

Set Vi= <epy...,e;> fori=1,..,n.
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LEMMA 5: Fori = 1,...,n let S; denote the intersection of V; and the axes of
Bi,...,B;. Then S;#0 ifandonly if (- Cit1 = 1.

Proof: From Lemma 3 (a) one checks easily that the intersection of V; and the

axes of Bs,..., B; is 1-dimensional, spanned by the vector

er + (a2 + (2(zes + -0 + (23 G e

Thus if S; # 0, then S; must be spanned by the above vector, and so this vector
must be fixed by B;. Conversely, the latter condition implies S; # 0. It is
equivalent to the equation

GG+ GMA-G) G+ G =Gi) GGG =1
This simplifies to the condition (;---(iy1 =1. [ |

For: =1,...,nlet T; be the group generated by B, ..., Bi. From Lemma 3 we
see that the group I'; fixes the space V; =< ey, ...,€; >.

LEMMA 6: If (i---Cit1 # 1 then T acts irreducibly in V; (1 <i <n).
(By Lemma 4, the converse also holds for 7 > 1).

Proof (of Lemma 6): By way of contradiction, assume the Lemma is false. Hence
there is some j > 2 such that (;...(j4+1 # 1, and I'; acts reducibly in V;. Take j
to be minimal with this property. Then there exists a non-zero, proper subspace

E of V; that is fixed by I';. Furthermore, the space S; from Lemma 5 is zero.

Case 1: (---(j#1.
In this case I'j_; acts irreducibly in Vj_;, hence ENV;_; = 0 or E=V;..
The latter cannot occur, since B; does not fix V;_;. Hence E is a 1-space with
V;=V;-1 + E.

The centers of By, ..., Bj_; are contained in Vj_;, hence they cannot equal E.
By Lemma 4, E is also distinct from the center of B;. Hence E lies on the axes
of By,...,B;. Thus the intersection of V; and these axes is non-zero. But this

intersection is the space S;, which is zero—contradiction.

Case 2: (---(j=1

Then ¢{---(j—1 # 1. Assume first j > 2. Then I'j_; acts irreducibly in Vj_,.
Hence ENV;_; =0 or E contains V;_3. The latter cannot occur, since Viea +
B;_1(Vj-2) = Vjo; and Vj_y 4+ Bj(Vj-1) = V;. Hence ENVj2 = 0. This
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implies that E cannot contain the center of B; for ¢ < j — 2, hence E lies on the
axis of B;.

If E does not lie on the axis of B;_; then the center C of B;_; lies on E; then
C C ENVj_1, hence C = EnV;_; (since E intersects Vj_, trivially). But
then C is fixed by B;_,, contradicting Lemma 4. Thus E lies also on the axis of
B;_,. Hence the intersection of E with the axis of B; is contained in S;. Since
S; =0, it follows that E is the center of B;. Hence B;_, fixes the center of Bj,
contradicting Lemma 4. This settles the case j > 2. The case j = 2 follows with
the reasoning from Case 1. 1

The proof of Proposition 1 is now complete, because (;---(ny1 = (ris # 1,
hence T is irreducible by Lemma 6.

Recall that a linear group is called primitive if it is irreducible, and does
not permute the summands in any non-trivial direct sum decomposition of the

underlying vector space.

COROLLARY 2: Ifn > 2 then A acts primitively in V.

Proof: First we prove:

CLAIM 1: A contains two non-involutory perspectivities that do not commute.

Proof: One sees easily that there must be three distinct indices 1,7,k with
Gi¢j # =1 # (iCk, unless (3 =+ = ¢, = v/—1 (and p # 2). In the latter case, A
contains the non-commuting perspectivities ®,(¢) and ®,(¢) of order 4 (Lemma
2). Thus we may assume that not all {; equal v/~1. By (5) we may then further
assume (3(2 # —1 # (2(3. Then B, and B; are perspectivities with the desired
properties (Lemma 3). (Note that if two perspectivities commute, then they fix
each others centers). This proves Claim 1.

Now assume V =W; @ ... W,,, where A permutes Wy,..., Wy, transitively.
We have to show m = 1.

Let d be the dimension of the W;. If d > 1 then W) intersects the axis of
each B; non-trivially, hence B; fixes W. Since ' =< By, ..., B,, > is irreducible,

it follows that m = 1, as desired. Thus we may assume d = 1. Then we have:
CLAIM 2: Any non-involutory perspectivity from A fixes Wy, ..., Wp,.

Proof: Let P be a perspectivity in A that does not fix all Wj, say P(Wy) = W,.
We follow the argument in [Wa, Lemma 2.1]: The center C of P lies on W, & W,



Vol. 82, 1993 GALOIS REALIZATIONS 415

hence P fixes W, @ W,, and therefore switches W and W;. Thus P? fixes W,
and Ws. Hence C = W; or C =W, — a contradiction — unless P2 = 1. This
proves Claim 2.

Since Claim 2 contradicts Claim 1, the proof of Corollary 2 is now complete.
[ |

§1.4. THE INVARIANT HERMITIAN FORM.
Set (! d=°'(C1_l, .-s¢;7}). The goal of this section is to prove:

PROPOSITION 2: ®-1 is the dual of ®;. More precisely, there is a non-degenera-
te, Fy-bilinear pairing <,>:V xV — F; such that for all Q € B,((),v,weV
we have

<P(Q) v, 21 (@) w> =< v,w>.

COROLLARY 3: (a) If ( =(-1,...,—~1) then ¢ = p is an odd prime, n is even and
A = Sp,(p).

(b) If ¢ = g2 is a square and all {; have norm 1 over Fy,, then A leaves a
non-degenerate hermitian form on V invariant.

Proof: (a) Assume ¢ = (—1,...,,—1). Then the non-degenerate bilinear form
<,> from Proposition 2 is invariant under A. Furthermore, ¢ = p because
Fy, = Fp(Gay ..., $r); P is odd because all {; # 1, and n is even because (1 -+ - (r =1
(and n =r — 2).

Further we have B,({) = B,, hence A =< &;((),...,®-(¢) >. From Lemma
2 we see that the ®;({) are now transvections (i.e., perspectivities with incident
center and axis); because of (2) it suffices to check this for ®;(¢). Hence A is an
irreducible subgroup of GL,.(p), p # 2, generated by transvections. By a theorem
of McLaughlin [McL], it follows that A equals Sp,(p) or SL,(p). The latter case
is ruled out (for n > 2) because A leaves a non-zero bilinear form invariant. This
proves (a).
{(b) Denote the automorphism of order 2 of F, by t — t. Extend the action of this
automorphism to column vectors and matrices by applying it to the coordinates.

The hypothesis yields ¢ = ¢~!. Hence ®(Q,() = &(Q,¢) = ®(Q,(™") for all
Q € B,. (By (4) it suffices to check the first equality for Q@ = Q;, in which case
it follows from Lemma 2 because ®(Q;,¢) = ®:({)). In particular, we get

2((Q) = &¢-:(Q)
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for all @ € B,(¢). This implies that A leaves the sesqui-linear form (,) invariant
that is defined as follows: (v,w) =< v,w > for all v,w € V, where <, > is the
bilinear form from Proposition 2. (Clearly (,) is linear in v and semi-linear in
w.)

Since A is absolutely irreducible (Proposition 1), it follows that the form (,)
is hermitian or anti-hermitian. Multiplying by a suitable scalar, if necessary, we
get it hermitian. This proves (b). |

Remark 2: The symplectic form from case (a) can be written down explicitly:
Set (ei,ej) equal to 1,—1, or 0if i < j, ¢ > j or i = j, respectively (for
i,j = 1,..,n). This yields a non-zero symplectic form on V. A computation
using Lemma 2 shows that this form is invariant under A¢, ¢ = (-1,...,-1).
When trying to do the same for the hermitian form from case (b), one sees
quickly that the computations get too complicated. Thus a more conceptual
approach is needed: The invariant pairing from Proposition 2 arises from the
fact that the product of the entries of an r-tuple is invariant under the braiding

action. This can be worked out as follows.

Constructing an invariant of ®; ® ®¢-: : Consider W =V @ V. Forw e W,
let w' and w" denote its projections: w = (w',w"). Define the set W as the

cartesian product of W and V ® V, and make it into a group by defining

(wi,x1) - (w2, x2) = (w1 +wz, x1+ X2+ w) Qwjy

for wy, w2 € W, x1,x2 € VQ®V. The group W is a central extension of W by
VeVv:
VeV - W - w

where the first map is the embedding x — (0, x), and the second map is projec-
tion.

Consider the natural action of GL,(¢)xXGLx(¢) on W =V @V (where (g,h)
sends (u,v) to (g(u), h(v))) and on V@V (where (g, k) sends u®v to g(u)®h(v)).
These actions extend naturally to an action on W, commuting with the maps in
the above central extension.

Embed Z (the group of scalars from §1.1) into GLn(¢)xGLn(g) by letting
¢ send (u,v) to ((iu,(7'v). Then Z centralizes V®V. Set H = W x*Z,
H =W x*Z. Since Z centralizes V ® V, we get the central extension

VeV - H - H
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where the second map is the identity on Z and restricts to the projection map
W — W. The action of GL,(g)xGL,(q) extends further to H and H, central-
izing Z and commuting with the maps in the above central extension.

The map H — H induces a bijection between the p'-elements (i.e., elements of
order prime to p) of H and of H (because the kernel is a central p-group). Under
this bijection, each r-tuple

h = ([07C1]7[w17<2]1-'-7[w"+1vCr]) € H"

corresponds to some r-tuple h € H". This correspondence commutes with the
braiding action of B, on these r-tuples.

Now take specifically w; = (ej,e;} for i =1,...,n, and

Wpyy = (— zn: )\ieia - ,Z' )‘rlei),
i=1 i=1

with Aq,..., A\, as in Lemma 1. Consider the maps P',P": H=W x*Z —
G =V x*Z, where P’ (resp., P") sends [w, (i] to [w', {i] (resp., [w",¢!]). Under
these maps, the above r-tuple h € H" is mapped to the r-tuples F(E,,() and
F(E.,(™!), respectively (where E, denotes the identity matrix in GL.(q), and
F(B,() is the r-tuple from Lemma 1). In particular, it follows by Lemma 1 that
the product of the entries of the r-tuple h is 1. Hence for the lifted r-tuple h the

corresponding product is some element of the kernel V ® V that we denote by II.
CLAM 1: II is invariant under ®; ® ®¢-1.

Proof: Consider the map ®¢ x@.-1 : B({) = GL.{(¢)xGL.(¢). By the above,
this lifts to an action of B,(¢) on H and H; for Q € B.(¢), denote the induced
automorphism of H and H by & H(Q) and ®5(Q), respectively. It follows that
® 5 (Q) restricts to the map @¢(Q)® &;-1(Q) on VRV.

Each @ € B,((), in its braiding action, sends the r-tuple F(E,, () to F($¢(Q),
(), and sends F(E,,{"') to F(®:-1(Q),(™") (this is immediate from the def-
initions in §1.1). Via the maps P, P" it follows that ), in its braiding action,
sends h to the r-tuple obtained by applying ® 4(Q) to the entries of h. Then Q,
in its braiding action, also sends h to the r-tuple obtained by applying @ 5(Q)
to the entries of h. This holds because the map H — H is a bijection on the
p'-elements, and commutes with the braiding action of Q as well as with the

action through @5 and ®5.
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Since the product of the entries of an r-tuple is invariant under the braiding
action, it follows that II = ®4(Q)-II = ®.(Q) ® ¥,-1(Q) - I[I. This proves
Claim 1. ]

Consider the natural isomorphisms
VeveVeV)*=V'eV") = {V'xV* > F, bilinear}

where * denotes Fy-dual. Via these isomorphisms, the invariant II € V®V yields
a dual pairing between ®7 and ®7_, (in the sense of Proposition 2). Because A¢
is irreducible, this pairing is non-degenerate if II # 0. Then ®{ is dual to @Z-, ,

hence is equivalent to ®.-1. Thus Proposition 2 now follows from
CLamM 2: I # 0.

Proof: Recall that the w; occurring in the r-tuple h were chosen such that
wi=w! =¢fori=1,..,n,and w), =—0, Nei, wlh;=—-10 A e
Set xo =wj 4 @wy,,,.

The element [wi,(iy1] € H lifts to a unique p'-element [, (iya1] € H, for
i=1,...,n+ 1. Write ; in the form (w;, x;) with x; € V®V. Then yx; €<

w} Q@ w! > because (W, (i4+1) is a p'-element. Now we compute:

II= [0, C]] [lbl, CZ]---[’-T)n+1 ’ CT]
= (C;lc:_l, wy,X1) (Cr—_lx Wy, Xn)(wn+1aXn+l)'

Omitting the first coordinate (which gives 0), we continue as follows:

"
D= x1+-+xnt1+ Z Cou s @€y —Wniy @Wyyy
1<v<psn

= x1+-+Xxat E Cop &y @€y +Xnt1 — Xo
1<v<uln
for certain non-zero ¢,, € .

Note xnt+1 — Xo €< Xxo > from the above. If x.41 — Xxo = 0 then clearly
I #£0, because x; €<e; ®e; > fori=1,..,n. If xup1—xo #0, thene; ® e
occurs with non-zero coefficient in II, because it occurs with non-zero coefficient
in xo = (T Aie;) ® (X A7 'ei). Hence II # 0 in either case. This proves Claim
2.
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§1.5. &, DETERMINES (.
In the following we need some geometrical language. The projective space of
rank n over the finite field F,, denoted P*~!(g), is the lattice of all (non-trivial)

subspaces of the vector space Fj. The 1-spaces are called points.

LEMMA 7: Set Py =< e; > (= the center of By), and P; =< ez > (= the
center of 3:(Q2:Q%Q;"), cf. (5)). Further, @, (resp., Q2) is the intersection of
V. with the axis of By (resp., Bz). If (1(2 # 1 then the cross ratio of the 4 points
Q1, P2, P, Bi(P;) is (['¢;', and the cross ratio of the 4 points Q,, Py, P1,Q;
is:

(G =¢GN G — 1)

Proof: We use that for any two linearly independent vectors a,b and non-zero
scalars p,v the cross ratio of the 4 points < a >, < a+b >, < b > and
< pa+vb>is p~lv. We omit the details (straightforward from Lemma 3).
]

Let B; 2 be the normal subgroup of B, generated by the conjugates of @ and
Q3. Let ®;5(¢) be the restriction of ¢ to By .

COROLLARY 4: Suppose { = (fl,...,fr) is another r-tuple with the properties
of ¢ from Theorem 1. Assume that &, 3(¢) is equivalent to &, 5(¢) (i.e., there is
T € GLn(q) such that $5(Q) =T &((Q) T~" forall Q € By). Then (= (.

Proof: Since B; = ®¢(Q?) and (DZ(Qf) have the same eigenvalues, we get
¢1¢z = (i1¢2 (Lemma 3). From (5) it follows that if &;2(¢) and ®,2({) are
equivalent, then also ®; 2("() and 01,2(”5) are equivalent, for each 7 € S,. It
follows that (;¢; = (;i(; for all i # j.

If ¢i{(j =1foralli# jthen (= (-1,..,-1)= ¢. Thus we may assume
¢1¢2 # 1. Since T preserves cross ratios, it now follows from Lemma 7 that
(3 = (3. Then ¢ = { by the above. [

COROLLARY 5: The following are equivalent:
(1) A leaves a non-degenerate bilinear (resp., hermitian) form on V invariant.
(ii) ®¢(Bi,2) leaves a non-degenerate bilinear (resp., hermitian) form on V
invariant.
(i) We have ( = (-1,...,—1) (resp., ¢ = 2 is a square, and all {; have norm

1 over Fy, ).
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If n > 2 then it suffices to assume in (ii) that ®.(B12) leaves the form invariant

up to scalar multiples.

Proof: By Corollary 3, (iii) implies (i). Further (i) implies (ii) trivially.

Now we show that (ii) implies (iii). If the invariant form is bilinear, then &, 2(¢)
is equivalent to its dual. Hence ®,2() is equivalent to &, 5(¢~!) (Proposition
2). It follows that ¢ = (™!, hence { =(-1,...,~1) (Corollary 4).

Now assume q is a square. If the invariant form is hermitian, then &;2(¢)
is dual to 'iI>1,2((T ). (Notation as in the proof of Corollary 3). Hence & 2(() is
equivalent to ®; 2(¢™!) (Proposition 2), and so { = (™! (Corollary 4). Thus the
¢i are as in (iii). This proves that (ii) implies (iii).

It remains to prove the last assertion in Corollary 5. For this it suffices to show
that the given form f, invariant under ®¢(B,,2) up to scalar multiples, is actually
invariant. We need only show that f is invariant under all perspectivities P in
®¢(B,,2), since ®¢(B1,2) is generated by perspectivities (clear from its definition
and (5)). But f does not vanish on the axis of P, since n > 2 and the axis
is a hyperplane. Thus P cannot transform f into a non-trivial scalar multiple
(because P acts as identity on its axis). Hence P leaves f invariant, as claimed.

We derive another corollary that we need in the next section. First we return
for a moment to the set-up of §1.2. From the definitions it follows immediately
that

B.("9¢) = Q7' B:(() Q
for each Q € B,. Thus (5) yields for ¢' = ®(¢ :
(6) A = ¥(Q,0)7" A¢ ¥(Q,0).
Since & : B, — S, is surjective, it follows that for any (' = "¢ (v € S,) the
group A is conjugate Ac.

COROLLARY 6: Suppose n > 2, and A leaves a subspace P = P"7!(¢') of
P"~1(q) invariant. Then ¢=¢q' and P =P"71(q).

Proof: ¥ (;(;j = 1for all ¢ # j then ¢ = (—1,...,—1), hence ¢ is a prime
(Corollary 3) and then trivially ¢ = ¢. Thus we may assume (;(z # 1 (using

(6))-
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The center and axis of each perspectivity from A lie in P (since n > 2). The
cross ratio of any 4 collinear points of P lies in Fy. These two facts, together
with Lemma 7, yield that (;(s, and then also (3, lies in Fp. Using (6), it follows
that all ¢; lie in Fyr. Hence ¢ = ¢’ (since the (; generate Fy). |

§1.6. THE CASE n > 2.

A perspectivity is called a transvection if the center lies on the axis; otherwise
it is called a homology. The image of such an element in PGL,(¢) is again called
a homology etc..

We use the following result of Wagner [Wa]. For simplicity, we state the result
only under the additional hypothesis that the group leaves no proper subspace
of P*~1(q) invariant.

THEOREM (Wagner): Suppose A is a primitive subgroup of PGL,(g), n > 2,
that contains homologies of order > 2. Assume A leaves no proper subspace
P = P*~1(q') of P*~}(q) invariant. Then either ¢ is a square and

PSU.(¢g) < A < PU,(g),
or
PSL.(g) < A < PGLa(q)

orn=3,qisodd, A2 PUs4), or n=4, qisodd, A2 PSU(4). In the two
exceptional cases, A contains no homology of order > 3.

Now we can prove:

PROPOSITION 3: Suppose n > 2. Exclude the two exceptional cases from Wag-
ner’s theorem (in the case n < 4). Then the following holds:
(b) If ¢ = ¢¢ is a square and all {; have norm 1 over F,,, then

SUn(g) < B¢ < Un(g)-

(¢) If¢ is not as in (b), and ¢ # (-1,...,,~1), then

SLa(g) £ A¢ £ GLa(g)-

Proof: From (6) and Lemma 3 we see that A contains a non-involutory homology
unless (;(; = %1 for all i # j. The latter implies (?¢} =1 for all i # j, hence
(¢ =..=(% = +£1. If this value is +1, then ( = (-1,...,—1), a case that
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is not under consideration (see Corollary 3; in this case, actually A contains
no homologies). If ¢ = ... = (2 = —1 (and p # 2), then we may assume
¢1 = ¢ = /=1 (by (6)), hence A contains a homology of order 4, namely ®1(¢)
(Lemma 2).

Hence we may assume A contains a non-involutory homology. Together with
Corollary 2 and Corollary 6, it follows that the image A of A in PGL,(g) sat-
isfies the hypothesis of Wagner’s theorem. Since we excluded the exceptional
cases, Wagner’s theorem implies that A either contains PSL,(g), or lies between
PSU,(g) and PU,(g). Thus the group AF; contains SLn(g) or SUn(g). Since
the latter groups are generated by transvections, we have even SLa(g) or SUn(q)
contained in A.

Assume now that ¢ is as in (b), hence A < U,(g) (Corollary 3). Then A
cannot contain SL,(g), hence SUn(g) < A. This proves (b).

Finally, assume A does not contain SL,(g). Then by the above, A lies between
PSU,.(g) and PU,(g). It follows that A preserves the corresponding hermitian
form up to scalar multiples. Then ¢ is as in (b) (by Corollary 5). This proves

(¢). 1

LEMMA 8: If one of the exceptional cases from Wagner’s Theorem occurs for the
image of A¢ in PGLy(q), then p > 3, and ( is as in (E3) or (E4) from Theorem
1

Proof: Assume one of the exceptional cases occurs. Then q is odd, and by [Wa,
Lemma 3.1} the group A contains no transvection. This implies (;(; # 1 for all
i # j (Lemma 3 and (6)).

Since A contains no homology of order > 3, we have (;{; of multiplicative
order < 3 for all i # j (Lemma 3 and (6)); further, if {; = (j for ¢ # j then
—(; has order < 3 (Lemma 2 and (6)). Thus clearly p # 3. Let ¢ be a primitive
third root of unity in F;. We get for all i # j:

(i) ¢i¢; equals —1 or e*!.
(i) If (i =(; then (; = —e¥l,

By (i) the ;’s can take at most 4 different values. Because r > § it follows that
they cannot be all distinct. Thus by (ii) we may assume ¢; = —e. (Interchanging
¢ and € if necessary). Then (i) implies (; € {—¢,e™1,~1} for all i. Thereby,
e~! and —1 cannot occur both (by (i)), and each of them occurs at most once (by
(ii)). Thus after re-labellingwe get {; =-+- =({r—1 = —€and (, € {—¢,e*,-1}.
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Since (1---(r =1 wemust have {, = ¢! ifr=5,and (, = —e if r = 6. This

proves the claim. ]

The converse to Lemma 8 has been checked by computer (calculating over
the integers in the field of third roots of unity). Together with Proposition 3,
Corollary 3 and Corollary §, this completes the proof of Theorem 1 in the case
n>2.

§1.7. THE CASE n =2.

In this section we assume n =2 (hence r = 4). Let A denote the image of A
in PGLz(g). Let F; be an algebraic closure of F,.

If (i(;=—1forallis#j then p#2 and {; =---= (4 = v/~1. In this case
one finds that A = S, hence case (E2) of Theorem 1 occurs. Now assume not
all ¢; equal /=1, Then without loss of generality, (1{2 # ~1 (by (6)). We can
further assume (2(s # ~1 unless (3 = (s = —(3' = —(;’'; this exceptional case
gives (E1) of Theorem 1.

Assume now (;{z # —1 # (2(3. Since (1{z # —1 we have B? # 1, hence
B? is a perspectivity with the same center and axis as B; (see Lemma 3). Thus
B? fixes the same subspaces of V ® F, as B;. Analogously, we get the same for
Bj. Since T' =< By,B; > acts absolutely irreducibly in V' (Proposition 1), it
follows that the same holds for < B?, B} >. Hence A acts primitively in V @ F,.
By Dickson’s list of subgroups of PSLy(g) (see [Wa, Appendix]) it follows that A
is Ag, S4, As, PSLa(go) or PGL3(go), where ¢ is a power of go. (Note that A <
PSL2(¢?).)

Case 1: Alis A4, Sy or As.
Then all perspectivities in A have order < 5, hence all (i(;, ¢ # j, have multi-
plicative order < 5. Thus, if p > 5 then A cannot contain non-trivial unipotent

elements (that have p-power order), hence (i(; # 1 for all i # j by Lemma 3
(and (5)). Hence we are in case (E2) of Theorem 1.

Case 2: A is (conjugate to) PSL;(go) or PGL2(go).

The fixed points in P!(F,) of any element of PGLz(go) are rational over Fg. It
follows that if A lies in a conjugate of PGL3(gq), then the axes and centers of
the perspectivities in A are points of P}(F,) any four of which have their cross
ratio in Fg. By (6) and Lemma 7 it follows that all {; lie in Fga, hence g0 =g¢
or g¢=gq.
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We have shown that A is PSL2(go) or PGLy(go), with ¢o = ¢ or ¢¢ = q.
This proves (d) of Theorem 1. The first assertions in (a) and (b) of Theorem
1 were proved in Corollary 5. Corollary 3 proves the rest of (a). Now assume
¢ is as in (b), hence A < U,(g). Then certainly go # ¢, hence ¢2 = ¢q. Thus
A is a subgroup of Us(g) mapping onto PSUs(g) (& PSL2(go)) or PUs(q)
(2 PGLy(go))- It follows that A contains SUa(g) (since SU2(g) (= SL2(go))
is generated by transvections). This proves (b) of Theorem 1. The proof of
Theorem 1 is now complete.

§2. Galois realizations for A,

§2.1. REALIZATIONS FOR GL(g).

In recent approaches to the Inverse Galois Problem, one tries to realize finite
groups as Galois groups of regular extensions L/Q(z) (where “regular” means
that Q is algebraically closed in L). If a finite group H is isomorphic to such
a Galois group, we say for short that H occurs regularly over Q. In [V1,
Theorem 2 and 3] general criteria for realizing groups in this way (over Q and
other number fields) are given. Applying these criteria to the group G =V x*
Z (from §1.2), together with the r-tuple of conjugacy classes represented by
15 ey (r, We obtain the following Theorem 2.

Let (1,...,{r be generators of the finite field F, satisfying (;...(; = 1 and
0# ¢ # 1forall i. Set { = (€1y0e0Cr)y Z =< (159 > andn =r —2,
Suppose n > 2. Recall that ( is called rational if {{",...,{/ is a permutation of
1,...,{r for each integer m that is prime to ¢ — 1. Let A¢ be the image of the
homomorphism @ : B,({) = GLxa(g).

THEOREM 2 ([V1]): Let S be a subgroup of F; that is either trivial or contains
Z. If ¢ is rational, and A¢S = GLn(q), then the group GL,(¢g)/S occurs
regularly over Q.

From Theorem 1, it is easy to give conditions on n and ¢ that imply the
existence of rational ¢ with A¢S = GLj(g). We give some reasonable conditions
like this in the following Lemma. As one sees from the proof, these conditions
could easily be further refined to cover more groups GL,(¢) and PGL.(g). Let
¢ denote Euler’s p-function, and let again A¢ be the image of A¢ in PGLy(g).

LEMMA 9: (i) Assume q > 4 is either odd or a power of 4. If n is even and
n > ¢(g — 1) then there is rational { with A¢ = GLa(g).
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(ii) Assumeg=pisaprime,and (n,p—1)=2. If p=7 (mod 12) or p=5
(mod 8) then there is rational ( with A¢ = PGLy(p).

Proof: (i) Choose (1 such that —(; generates the multiplicative group F;. Let
(1, .---, s be the generators of the cyclic group < {; >. Note s < p(¢g~1)<n=
r — 2. Thus there are at least 2 more (;’s to choose: Take them to be —1 if ¢ is
odd, and elements of order 3 if ¢ is a power of 4 (with each of the two elements
of order 3 occurring the same number of times). This yields a rational r-tuple
¢ = ({1, .-+, ¢r) with the properties given before Theorem 2.

It remains to show that A¢ = GLya(g). By Lemma 3 (and (5)), A¢ contains
an element of determinant (.{; = ~(1 (= a generator of Fy) if ¢ is odd. If ¢
is even, the group < (3 >= ]F; is cyclic of odd order, hence the ({({ with 1, j
prime to ¢ — 1, i # j (mod ¢ — 1), generate < {; >; further, these ({C{ occur
as determinants of elements of A¢ (again by Lemma 3 and (5)). It follows that
det: A¢ — Fy is surjective.

Clearly, ( is not as in (a), (b), (E4),(E5) of Theorem 1. Hence if n > 2 then
A¢ contains SLn(g) (by Theorem 1). Thus A¢ = GLn(g) (by the previous
paragraph).

If n = 2 then our hypothesis implies ¢ = 5; then the unipotent elements of
GL,(g) have order 5, and A¢ contains such an element by Lemma 3. Thus A
contains PSL,(¢) = PSL(5) = As, either by (d) or (E2) of Theorem 1. Hence
A¢ contains SLy(5), and the claim follows as above.

(1) If p = 7 (mod 12) (resp., p = 5 (mod 8) ), let (; be an element of order 3
(resp., 4), let ¢z = ¢(;! , and take the remaining (;’s to be ~1. Then clearly  is
a rational r-tuple with the properties given before Theorem 2.

We may exclude the case n =2, p =5 (since this is covered by (i)). Then ( is
not as in (a),(b), (E2)-(E5) of Theorem 1, hence A¢ contains PSL,(p). Further,
A¢ contains an element of determinant —(; (by Lemma 3). But —(; is a non-
square in F} in either case. Hence A¢ = PGLna(p). (Note that PSL,(p) has
index 2 in PGL,(p) because (n,p—1)=2). ]

The case (i) allows to improve Theorem 1 of [V1].

COROLLARY A: Ifn and ¢ are as in (i) (resp. (ii)) of the above Lemma, then the
group GLyn(q) (resp., PGLn(g) ) occurs regularly over Q. In particular, if ¢ > 4
is a power of 4, and n > ¢(q — 1) is even and prime to ¢ — 1, then the simple
group PSLy(q) = PGLy(q) occurs regularly over Q.
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Examples: The group GL,(5) occurs regularly over Q for all even n > 2. Also,
GL,,(16) for all even n > 6. (The proof of Lemma 9 shows that for even ¢ actually
the bound n > ¢(g — 1) — 2 works). The latter groups modulo their center are

simple if n is prime to 15.

§2.2. REALIZATIONS OF UNITARY GROUPS.
In forthcoming work [V2], we will generalize Theorem 2 as follows:

THEOREM 2': Let S be a subgroup of Fy. If ( is rational, and A¢S/S is
self-normalizing in GLy(q)/S, then A¢S/S occurs regularly over Q.

Since the group PU,(q) is self-normalizing in PGLy(g), we get Galois realiza-
tions for PU,(g) under similar conditions on n and ¢ as in Corollary A. First we
need the analogue of Lemma 9.

LEMMA 10: (i) Let ¢ = p?* with p a prime, s a positive integer. Assume either
gorsisodd. If n>4isevenand n > ¢(\/g+1), then there is rational { with
A¢= Un(9)-
(ii) Assume g = p?, and (n,p+1)=2. If p=>5 (mod 12) or p=3 (mod 8)
then there is rational ¢ with A¢ = PUn(p?).

Proof: The construction is analogous to that in Lemma 9.
(i) Choose (; such that —(; generates the group S, of elements of Fy that have
norm 1 over F 5. Let again (i, ...., (, be the generators of the cyclic group < {1 >.
Note s < ¢(y/g+1) < n =r —2. Take the remaining (;’s as in Lemma 9. Then
¢ is a rational r-tuple with all {; of norm 1 over F, 5. Thus case (b) of Theorem
1 occurs. As in Lemma 9 one sees that det: A¢ — S, is surjective. This implies
A¢ = Un(g).
(i) Choose ¢ as in the proof of Lemma 9(ii). Then ¢ is again a rational r-tuple
with the properties given before Theorem 2. Further, case (b) of Theorem 1
occurs. (The case n = 2, p = 5 is done as in Lemma 9.)

As in Lemma 9, A, contains an element of determinant —(;. But —(; is a
non-square in S, (since S, has order p + 1). Hence A¢ = PU,(p?). (Note that
PSU,(p?) has index 2 in PU,(p?) because (n,p+1)=2). |

COROLLARY B: If n and q are as in (i) or (ii) of Lemma 10, then the group
PU.,(q) occurs regularly over Q. In particular, if ¢ = 2%* with odd s, and n >4
iseven,n > y(,/g+1) andn is prime to \/g+1, then the simple group PSU.(g) =
PU,(q) occurs regularly over Q.
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Example: The group PU,(4) occurs regularly over Q for all even n > 4. This
group is simple if n is not divisible by 3.

Remark: In view of the isomorphism PU;(p?) = PGL,(p), the cases (ii) of
Corollary A and B imply the following: The group PGLz(p) occurs regularly
over @ for all primes p with p # +1 (mod 24). This was shown in [MM] using

the rigidity method. It is quite remarkable that we get the same congruence
condition here, although the present method is quite different.
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