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ABSTRACT 

We determine the braid group action on generating systems of a group that 

is the semi-direct product of a finite vector space with a group of scalars. 

This leads to Galois realizations of certain groups GLn(q) and PUn(q). 

Introduction 

A new criterion for realizing groups as Galois groups was given in [V1]. This 

criterion involves a transitivity condition for the braid group action on certain 

generating systems of a finite group G. If this condition and others axe satisfied, 

then a certain subgroup of Aut(G) occurs as a Galois group over the rationals Q 

(even as Galois group of a regular extension of Q(x)). 

The criterion was applied in [V1] to a group G that is the semi-direct product 

of a finite vector space V = Fq with a group Z of scalars. As a result, the 

group GLn(q) was realized as Galois group over Q for certain values of n and q. 

All conditions from the criterion but the braid group transitivity were easy to 

check. For this transitivity, one needs to determine the subgroup A~ of GLn(q) 
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generated by certain explicit matrices (coming from the elementary braids). Even 

though stronger than necessary conditions on q and n were imposed (essentially 

n > 3q) to keep this group-theoretic problem manageable, its solution occupied 

much of the paper [V1]. 

The present paper contains a more systematic study of the above group- 

theoretic situation. The original goal was to find the exact conditions on q and 

n under which the above criterion would realize GL,,(q) over Q. It was expected 

that  the group A~ would usually contain SL,(q), with one known exception in 

the case that q = p is a prime (and Z = <  - 1  >). This exceptional case yields 

A¢ = Spn(p) (the symplectic group). 

Surprisingly, it turned out that A~ is a unitary group in many cases. This 

will lead to Galois realizations of certain unitary groups. The necessary group- 

theoretic work is contained in the present paper. However, one also needs a 

modification of the above criterion. Since this requires methods quite different 

from those of the present paper, it will be developed in later work. 

Theorem 1 of the present paper gives the classification of the groups A~ that 

arise from the braid group action. The proof is given in part 1 of the paper. Im- 

portant steps are to show that A~ is irreducible (§1.3), and to construct invariant 

bilinear and hermitian forms (§1.4). The proof is then completed by appealing 

to a result of Wagner [Wa] that classifies primitive linear groups containing non- 

involutory homologies. 

In part 2 we apply Theorem 1 to give Galois realizations for certain groups 

GL,,(q) and PU,(q). This is based on the criterion from [V1], and on an extended 

version of this criterion (to appear in [V2]). 

§1. Classifying the groups A~ 

§1.1. NIELSEN CLASSES AND BRAID GROUP ACTION, 

Fix an integer r > 3. Let G be a finite group. Let Er denote the set of r- 

tuples (gl, . . . ,gr) E G r with the following properties: gl " " g r  = 1 ,  the group G 

is generated by g l , . . . , g , - ,  and g / ~  1 for all i. 

The free group Fr-I  on generators Q1,.-., Q~-I acts on Er by the following 

rule: The element Qi (1 < i < r -  1) sends (g,,-.. ,gr) to 

(1) (g l , . . . ,  -1 g i +  l , g i+ l g i g i +  l , . . . ,  g r  ). 
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We let Fr-1 act from the right, so QiQj acts by first applying Qi, then Qj. 

One checks easily that the elements QiQi+l Qi and Qi+l QiQi+] induce the same 

transformation of Cr (for i = 1, . . . , r -  2); same for the elements QiQj and QjQi 

with l i -  Jl > 2. Hence the action of F r - i  induces an action of the Artin braid 

group Br on £r, where Yr is the quotient of Fr-1 by the above relations. From 

now on we work only in Br, and let the Qi's denote the corresponding generators 

of Yr. 

Let (3 = (C~,..., Cr) be an r-tuple of conjugacy classes of G. We let 8 (C)  

be the set of all (gl,...,gr) E Er with gi E Ci for all i. Further, the Nielsen 

class Ni(C) is defined to be the set of all (gl, . .- ,gr) E 8r for which there is a 

permutation lr E Sr with g~(i) E Ci for all i. 

Clearly, the set Ni(C) is invariant under the above action of Br. Each element 

Q E B~ sends the set £ (C)  to £(~(Q)C), where ~ :  B~ --~ Sr is the (surjective) 

homomorphism sending Qi to the transposition (i, i + 1). In particular, the kernel 

B (r) of the map ~; : Br --* Sr - called the p u r e  b r a id  g r o u p  - fixes the set 

£(C).  

§1.2. BRAID GROUP ACTION THROUGH THE MATRICES q~(Q, ().  

Fix an integer n >_ 2 and set r = n + 2. Let q be a power of the prime p, and 

let Fq be the finite field with q elements. Let Z = <  711,..., r/r > be a subgroup 

of the multiplicative group Fq, where ~11...71~ = 1 and T/i # 1 for all i. Assume 

further Fq = Fv(711 , ..., 71r). 

In the following, ~1,.- . ,~ will always be sonle permutation of T/1,...,r/~. Set 

= ( ~ ,  ...,¢~), ~/= (7/~, ..., 7/~). If (~ ,  . . . ,~ )  = (71,O), ..., 7/,(~)) with ~r E St, then 

we write ~ = ~T/for short. 
f t  

Let V be the elementary abelian groul) Fq. Let G d.=~ V × ~ Z be the semi-direct 

product of V and Z (where Z acts on V via scalar multiplication). We write the 

elements of G as pairs Iv, z] with v E V, z E Z. For i = 1,..., r, let C(~)  be the 

conjugacy class of G consisting of all Iv, ¢i], v E V. Set C¢ %~(C(~]), ..., C(¢r)), 

and £(~)~rE(C¢)  (see §1.1 for notation). 

LEMMA 1: Each element o f £ ( ( )  is conjugate under V to exactly one element of 

the form 

(*) e v. 

Det~ne A],.. . ,A, E Z by setting Ai (~+1] -1 . . . .  (,+l" Then an dement of the 
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e o ~  (*) n~s in e(¢) ie and only ie o , , . . . ,  ~,, is an F,-basi~ of V, ann ~.+, = 

- A l v l  . . . . .  A,,v,. 

The proof of the lemma is straightforward (details omitted). 

For each matrix B E GL,(q) mad each permutation ¢ of 7/, let F(B ,  ¢) denote 

the element of the form (*), where vl, ..., v ,  are the column vectors of the matrix 

B, and v,,+l is given in terms of vl, ..., vn mid ¢ as in the Lemma. Note that from 

the definitions in §1.1, tim set Ni(C~) is the union of the  sets £(¢), as ¢ runs over 

the permutations of y. It follows that each element of Ni(C~) is V-conjugate 

to exactly one element of the form F(B,  ¢). This yields a 1-1 correspondence 

between the quotient Ni(C~)/V mid the set of pairs (B, O, where B E GL,,(q), 

and ¢ is any permutation of 7/. 

Thus the action of the braid group Y~ on Ni(C~)/V (via (1)) induces an action 

on the set of pairs (B, 0 .  Denote this action by (B, ¢) ~ (B, ¢)Q (Q E B~). 

n (i.e., el is the vector with entries Let el, ..., en be the staaxdard basis of V = Fq 
1, 0, ..., 0 etc.). Straightforward computations yield: 

LEMMA 2: For i = 1, ..., r - 1, and/ 'or earl2 pair (B, ¢) as above, we have 

(B,  ~)Qi -- ( n  ¢ i (¢) ,  (i,i+1)¢) 

where (i , i  + 1) is the transposition switdah2g i and i + I, and ffi(¢) e GL,(q)  is 

the following matrix: 

(a) For i = 2, ..., n, the matrix ~i(¢) has j - th  colmnn ej /'or j ¢ {i, i - 1}, has 

(i - 1)-st column ei emd i-th column ¢/+llei_s + ¢ ~ ( ¢ i  - 1)ei. 

(b) The matrix ~ (¢) has first cohnnn ¢ ~  (¢~ - 1) -1 (1 - ¢l)e~ and j - th  column 

(¢2 -- 1)--1( 1 -- Cj+l)el  "~- ej f o r j  = 2,.. . ,n. 

(c) The matrix ~,,+ , (¢) has j - th  column ej /'or j = 1,..., n -  1, and n-th column 

-Ale1 . . . . .  Anen with A1, ..., An as in Lemma 1. 

Recalling that the elements of Br act from the right, we get 

(2) (B,¢)'~'q~ = (B ~(¢) ¢j(("~+'¢), (~'~+')((J'i+'O). 

In general, since the Qi's generate Br, it follows that for each Q E Br and for 

each ¢ there is unique ~(Q, ¢) E GL.(q) such that 

(3) (B,~)  Q = (B (~(Q,~),"(Q)() 
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for all B E GL,(q). Thereby ~ : Br --* S~ is the natural surjection from §1.1 

(sending Qi to the transposition (i, i + 1)). 

We get the rules: 

(4) @(QQ,,() = @(Q,() @(Q,,~(Q)(), (I)(Q-~,() = @(Q,~(Q)-'()-I,  

(5) @(QQ,Q-1, () = @(Q, () @(Q,, ~(Q)() @(Q, ()--1, 

Let Br(() be the group of all Q 6 Br with ~(Q)( = (. The group B~(() is the 

stabilizer in Br of the set E(() (see (3)) ,  and it contains the pure braid group 

B(r) = ker(~). Each O E ~ ( 0  sends the pair (B, 0 to (B ¢(Q, O, C) (see (3)). 
Hence the map @¢: Br(() --* GL,(q) sending Q to @(Q, () is a homomorphism. 

The image of this homomorphism is a subgroup of GL,(q) that we denote by A¢. 

We clearly have : 

COROLLARY 1: The braid group B~ acts traasitively on the set N i ( C , ) / V  (via 

(1)) i f  and only i f  A¢ = GL,(q). 

If these equivalent conditions hold, and ( is rational (see §2), then by [V1] 

the group GL,(q) (= A¢) is a Galois group over Q(x). (Without the rationality 

condition, we get it only as a Galois group over Q.b(x)). But we also get Galois 

realizations for A¢ (or some related groups) in certain cases when it is a proper 

subgroup of GL.(q) (see §2). 
Before we can go further with this, we need a classification of the groups A¢. 

l ' I  
This is given in the following theorem. Thereby, we view V = Fq as Fq-vector 

space of column vectors, on which the group GL,(q) acts by left multiplication; 

and q is a power of the prime p. 

THEOREM h Let (*,...,~r be generators of the finite field Fq satisfying 

( 1 " " ( ~  = 1 and (~ ~ 1 for a11i. Set ( = ((1, ..., (~) and n = r - 2 .  Sup- 

pose n >_ 2. Let A C be the image of the homomorphism (I,< : Br(() ~ GLn(q). 
Y~ 

Then A~ acts absolutely irreducibly on V = Fq. Furthermore: 

(a) A(  leaves a non-zero billnear form on V h2variant i f  and only i f  q = p is 

a prime, n is even and ( = ( -1 ,  ..., -1) .  In this case, 

a~ = Sp.@). 



410 H. V()LKLEIN Isr. J. Math. 

(b) A¢ leaves a non-zero hermitian form on V invariant i f  and only i f  q = q2 

is a square and all ¢i have norm 1 over Fqo. In this case, 

SUn(q) ~ A¢ _~ Un(q) 

with possible exceptions (E1)-(E4) below. 

(c) /.f ¢ is not as in (a) or (b), and i f  n > 2, then 

SL,,(q) _< A¢ _< GL.(q) 

with exceptions (E3) and (E4). 

Let ~¢ denote the image of A~ in PGL,,(q). 

(d) / I n  = 2 then £¢  is (conjugate to) PSL2(q0) or PGL2(q0), q 6 {q0,q02}, 

with exceptions (El) and (E2). 

The exceptional cases are as follows: 

(m) n = 2 and ~ = (t, t, - t  -1, - t - ' )  (up to permutation) with t 4 # 1. rn this 

case, /~¢ is dihedral of order 2m, with m prime to q. 

(E2) n = 2, and /~¢ ~- A4, $4 or As. / i p  > 5 then ¢i~j ~ 1 for all i ~ j .  

(E3) n = 3, p > 3 and i -- ( - e , - e , - e , - e , e  -1)  w i the  s = 1  (up to permuta- 

tion). ~ this case, £~ ~- PC3(4)~- F~×" SL~(3). 
(E4) n = 4 ,  p > 3 a n d  ¢ = ( - e , - e , - e , - e , - E , - e )  w i t h e S = l , e ¢ l .  In this 

case,/~¢ - PSU4(4) -~ PSp4(3). 

Thereby Sp,(q) (resp., V,,(q)) deuotes the invariaace group in GL,(q) of a 

non-degenerate symplectic (resp., her,nitim~) form on V. And SUn(q) is the 

intersection of U,(q) and SL,(q). 

Remark 1: The case n = 2 

If ~ = ( t , t , t , t )  with t 4 -- 1, but t 2 ¢ 1, then case (E3) occurs with type $4. If 

= ( s , s , s , - 1 )  with s s = -1,  but s # -1,  theu case (E3) occurs with type .44. 

Further, to compare (a), (b) with (d) note the isomorphis,ns SU2(q02) ~ SL2(qo) 

and Sp2(q) ~ SL2(q). 

Remark 2: The groups in (E3) and (FA) were classically studied in low-dimensio- 

nal linear group theory (e.g., [Mi], and the remarks in [Wa]; the group in (E4) 

belongs to the 27 lines on a cubic surface). It will be interesting to explore their 

Galois-theoretic significance. 

The proof of Theorem 1 occupies the rest of §1. The idea is to apply a theorem 

of Wagner [Wa] that classifies priufitive linear groups containing non-involutory 
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homologies. In §1.3 we prove that A¢ is prinfitive, and in §1.4 we construct the 

invariant bilinear resp. hermitian form. 

For the rest of §1, we assume that ~, n and q satisfy the hypothesis of Theorem 

1. Instead of A¢ we write A, for short. 

§1.3.  A IS IRREDUCIBLE. 
d e f  2 For i = 1, ..., n + l  we have Q2 E B (r) c Br(~). Hence the matrix B, = d~(Qi, ¢) 

lies in A. By (4) we have 

Bi =- (~i(~) ~i((i'i+l)~). 

Let F be the subgroup of A generated by the matrices B1,-..,Bn- The goal of 

this section is to prove: 

PROPOSITION 1: F and A act absolutely irreducibly in the Fq-vector space V. 

11 From now on we consider V = Fq as Fq-vector space of column vectors, on 

which the matrix group GL,(q)  acts by left multiplication. For elements v, w, ... 

of V we let < v, w, ... > denote the subspace sprained by these elements. Call 

an element P ~ 1 of GL,(q)  a p e r s p e c t i v i t y  if it fixes a hyperplane of V 

elementwise. This hyperplane is then called the axis of P,  and the 1-dimensional 

space Im(P  - 1) is called the c e n t e r  of P. 

Recall that an irreducible subgroup of GLn(q) that contains a perspectivity is 

absolutely irreducible (see e.g., [Wa, Lemma 2.1]). Since the Bi's axe perspectiv- 

ities by the following Lemma, Proposition 1 follows once we have shown that I" 

is irreducible. 

From Lemma 2 one computes that the matrices Bi have the following form: 

LEMMA 3: Bi is a perspectivity that acts with eigenvalue ~[-1(~+~ on its center 

(for i = I, ..., n + 1). More precisely: 

(a) For i = 2, ..., n the matrix Bi has j - th  cohnnn ej for j q[ {i, i - 1}, has 

( i - 1)-st column 

¢i~l.~ei-] -I- ¢i~t.l((i- 1)ei 

and has i-th column 

(7'(1 - C ~ ) e , - ,  + (1 - C ~  + C~C~')e i ,  

Thus Bi is a perspectivity with cenCer spanned by 

(1 - (i+~) ei-i  + (¢i - 1) ei 
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and with axis spanned by the cj with j ~_ {i, i - 1} together  with the vector  

ei-1 + (iel. 

(b) The matr ix  B1 has ~rst column (11(~-1el and j - t h  column 

(;'(1 - + 

f o r j  = 2 , . . . ,n .  Thus B] is a perspectivity with center < el > .  

(c) The matr ix  B , + I  has j - t h  column ej /'or j = 1, ..., n - 1, and has n-th 

COhlmn 

- I  -1 ( I -  (~n-l-l)(¢I el -[- ¢I¢2 e2 -Jr- . . .  - ' [ -  ~'l.-.¢n--I ell--l) -[- Cn+l~n+2 en, 

Thus B~+] is a perspectivity with axis < el,  . . . , en - I  ) .  

LEMMA 4: Bi-1 does not fix the center o/' Bi  /'or i = 2, ..., n. 

Proof.." For 3 < i < n it is clear f rom L e m m a  3 tha t  Bi-1  does not  fix the  center  

of  Bi. 

I t  remains  to show tha t  B1 does not fix the center of B2. From L e m m a  3(a) 

we see t ha t  the center  of B2 is spanned  by the vector  

w =  ( 1 - G )  e, + ( ¢ 2 - 1 )  e2. 

Clearly < w > cannot  equal  the center < c I > of BI .  Hence if the  perspec t iv i ty  

BI  fixes the  1-space < w > ,  then < w > must  lie on the  axis of  B1, i.e., BI  w = w. 

This  equat ion B1 w = w is equivalent to: 

(~-'¢~-'(1 - ¢3) + ¢~-'(1 - (3) ((2 - 1) = (1 - ~a). 

This  simplifies to 

(¢~-' - 1 )  ( ¢ 3  - 1 )  = 0 .  

This  contradict ion concludes the proof  of L e m m a  5. | 

Set Y ~  t < el , . . . ,e i  > for i = 1, . . . ,n .  
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LEMMA 5: For i = 1, . . . ,n let Si denote the h2tersection of ~ and the axes of 

B1,... ,Bi. Then Si ~ 0 // 'mid only if  ~1 "'" (i+1 = 1. 

Proof: From Lemma 3 (a) one checks eazily that the intersection of Vi mad the 

axes of B2, ..., Bi is 1-dimensional, spanned by the vector 

e5 + Ge2 + G(3e3 + "'" + G ¢ 3 " " ¢ i  ci. 

Thus if Si # O, then Si must be sprained by the above vector, and so this vector 

must be fixed by Bs. Conversely, the latter condition implies Si # O. It is 

equivalent to the equation 

This simplifies to the condition ~1 "'" ~i+1 = 1. II 

For i = 1, . . . ,n let Fi be the group generated by B1, .. . ,Bi. From Lemma 3 we 

see that  the group Fi fixes the space V / = <  el, ..., e / > .  

LEMMA 6: I f  ~1"'" ~i+1 # 1 then Fi acts irreducibly in ~ (1 < i < n). 

(By Lemma 4, the converse also holds for i > 1). 

Proof (of Lemma 6): By way of contradiction, assume the Lemma is false. Hence 

there is some j >_ 2 such that ~1---~j+1 # 1, mad Fj acts reducibly in 1/~. Take j 

to be minimal with this property. Then there exists a non-zero, proper subspace 

E of 1,~ that is fixed by Fj. b-kxrthermore, the space Sj from Lemma 5 is zero. 

Case 1: ~1""~ # 1. 
In this case Fj-1 acts irreducibly in 1~-1, hence E 13 V/-5 = 0 or E = l ~ - t .  

The  latter cannot occur, since Bj does not fix Vj-5. Hence E is a 1-space with 

~=~-5+E.  
The centers of B1,..., Bj-1 axe contained in ~ - 1 ,  hence they caamot equal E.  

By Lemma 4, E is also distinct from the center of Bj. Hence E lies on the axes 

of Bs, ...,Bj. Thus the intersection of ~ and these axes is non-zero. But this 

intersection is the space $i, which is zero--contradiction. 

Case2: ( 5  " " ( j  = 1 .  

Then ( 5 " "  ( j -1  ~ 1. Assume first j > 2. Theu F j-2 acts irreducibly in Vj-2. 

Hence E 13 ~ - 2  = 0 or E contains 1~-2. The latter cannot occur, since 1~-2 + 

B~-I(V,-2)  = Y,-5 and Vj_, + BAV~-~) = VS. I'Ience e 13 ~6-~ = O. Tlas 
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implies that E cannot contain the center of Bi for i < j - 2, hence E lies on the 

axis of Bi. 

If E does not lie on the axis of Bj-1 then the center C of Bj-1 lies on E; then 

C C E N I~-1, hence C = E N I~-i  (since E intersects ~ - 2  trivially). But 

then C is fixed by Bj-2 ,  contradicting Lemma 4. Thus E lies also on the axis of 

Bj-1. Hence the intersection of E with the axis of Bi is contained in Sj. Since 

Sj = 0, it follows that E is the center of Bj. Hence Bj-1 fixes the center of Bi, 

contradicting Lemma 4. This settles the case j > 2. The case j = 2 follows with 

the reasoning from Case 1. | 

The proof of Proposition 1 is now complete, because (l "'" (,~+1 = (~--~2 ¢ 1, 

hence F is irreducible by Lemma 6. 

Recall that a linear group is called p r i m i t i v e  if it is irreducible, and does 

not permute the summands in any non-trivial direct sum decomposition of the 

underlying vector space. 

COROLLARY 2: If  n > 2 then A acts primitively in V. 

Proof: First we prove: 

CLAIM 1: A contains two non-involutory perspectivities that do not commute. 

Proof:." One sees easily that there must be three distinct indices i , j , k  with 

¢i(j ~ --1 ¢ ¢j(k, unless (1 . . . . .  (r = ~ (a~l(l p ¢ 2). In the latter case, A 

contains the non-cormnuting perspectivities @1 (C) a~ld @2(() of order 4 (Lemma 

2). Thus we may assume that not all Ci equal V/Z-] -. By (5) we may then further 

assume ¢1(2 # - 1  ¢ (2(s. Then B1 and B2 are perspectivities with the desired 

properties (Lemma 3). (Note that if two perspectivities commute, then they fix 

each others centers). This proves Claim 1. 

Now assume V = W1 • ... • Win, where A pernmtes W1, ..., Wm transitively. 

We have to show m = 1. 

Let d be the dimension of the W i. If d > 1 then W1 intersects the axis of 

each Bi non-trivially, hence Bi fixes W1. Since F = <  B1,..., Bn > is irreducible, 

it follows that m = 1, as desired. Thus we may assume d = 1. Then we have: 

CLAIM 2: Any non-involutory perspectivity from A fixes W1, ..., Wm. 

Proof: Let P be a perspectivity in A that does not fix all Wi, say P(W~) = W2. 

We follow the argument in [Wa, Lemma 2.1]: The center C of P lies on W1 @W2, 



Vol. 82, 1993 GALO[S REALIZATIONS 415 

hence P fixes W1 @ 1472, and therefore switches W1 aald W2. Thus p2 fixes W1 

and W2. Hence C = W1 or C = W2 - -  a contradiction - -  unless p2 = 1. This 

proves Claim 2. 

Since Claim 2 contradicts Claim 1, the proof of Corollary 2 is now complete. 
| 

§1.4. THE INVARIANT HERMITIAN FORM. 

Set ~-1 ~ f ( ~ - l ,  ..., ~r l ) .  The goal of this section is to prove: 

PROPOSITION 2: ~ - ~  is the dual of  ~ .  More precisely, there is a non-degenera- 

te, F~-bilinear pairing <, >: V x V ~ Fq such that for all Q E Br(() ,  V, W E V 

w e  h a v e  

< > = < o, w > .  

COROLLARY 3: (a) If  ~ ---- ( - 1 ,  ..., - 1 )  then q = p is an odd prime, n is even and 

A = Spn(p). 

(b) / f  q = q0 2 is a square vmd all ~i have norm 1 over Fq0, then A leaves a 

non-degenerate hermitian form on V invariant. 

Proof." (a) Assume ~ = ( - 1 ,  . . . , -1) .  Then the non-degenerate bilinear form 

<, > from Proposition 2 is invariant under A. Furthermore, q = p because 

Fq = Fv((l , . . .  , (r); P is odd because all (i # 1, and n is even because ~1"'" (r = 1 

(and n = r - 2). 

Further we have Br(()  = /3r, hence A = <  (I)1((), ...,(I)r(() >. From i e m m a  

2 we see that the (I)i(() are now transvections (i.e., perspectivities with incident 

center and axis); because of (2) it suffices to check this for (I)~(~). Hence A is an 

irreducible subgroup of GLn(p), p ~ 2, generated by transvections. By a theorem 

of McLaughlin [McL], it follows that A equals Sp,,(p) or SL,,(p). The latter case 

is ruled out (for n > 2) because A leaves a non-zero bilinear form invariant. This 

proves (a). 

(b) Denote the automorphism of order 2 of F~ by ~ ~-~ ~. Extend the action of this 

automorphism to column vectors and matrices by applying it to the coordinates. 

The hypothesis yields ~ = (-~.  Hence if(Q, ~) = ~(Q, ~) = ~(Q, ~-~) for all 

Q E B~. (By (4) it suffices to check the first equality for Q = Qi, in which case 

it follows from Lemma 2 because ff(Q~, ()  = ~ ( ( ) ) .  In particular, we get 

(I,~(Q) = 4~¢-, (Q) 



416 H. V(~LKLEIN Isr. J. Math. 

for all Q E Br((). This implies that A leaves the sesqui-linear form (,) invariant 

that is defined as follows: (v ,w)  = <  v,O > for all v ,w E V, where < , >  is the 

bilinear form from Proposition 2. (Clearly (,) is linear in v and semi-linear in 

w.) 

Since A is absolutely irreducible (Proposition 1), it follows that the form (,) 

is hermitian or anti-hernfitian. Multiplying by a suitable scalar, if necessary, we 

get it hermitian. This proves (b). | 

Remark 2: The symplectic form fi'om case (a) cart be written down explicitly: 

Set (ei ,e i)  equal to 1 , -1 ,  or 0 if i < j ,  i > j or i = j ,  respectively (for 

i , j  = 1,... ,n). This yields a non-zero symplectic form on V. A computation 

using Lemma 2 shows that this form is invariant under A¢, ( = ( -1 ,  . . . , -1) .  

When trying to do the same for the hermitian form from case (b), one sees 

quickly that the computations get too complicated. Thus a more conceptual 

approach is needed: The invariant pairing from Proposition 2 arises from the 

fact that  the product of the entries of an r-tuple is invariant under the braiding 

action. This can be worked out as follows. 

Constructing an inwariant of(I,~®~¢-~ : Consider W = V ( D V .  Forw E W, 

let w ~ and w" denote its projections: w = (w~,w"). Define the set 14 r as the 

cartesian product of W and V ® V, and make it into a group by defining 

( w l , x , ) .  (w2,x ) = (,,,, + x,  + + ® 

for wl,w2 E W,  XI,X2 E V ® V. The group l~ is a central extension of W by 

V ® V :  

V ® V ~ I;V --* W 

where the first map is the embedding X ~ (0, X), and the second map is projec- 

tion. 

Consider the natural action of GL,(q) xGL,(q)  on W = V (D V (where (g, h) 

sends (u, v) to (g(u), h(v))) and on Y ® Y  (where (g, h) sends u®v to g(u)®h(v)) .  

These actions extend naturally to an action on l~, commuting with the maps in 

the above central extension. 

Embed Z (the group of scalars fi'om §1.1) into GL,(q)×GL,(q)  by letting 

(i send (u ,v)  to ((iu,¢~-%). Then Z centralizes Y ® Y. Set g = W ×~Z, 

= I~ r xsZ.  Since Z centralizes V ® V, we get the central extension 

V ® V ---) [I --) H 



Vol. 82, 1993 GALOIS REALIZATIONS 417 

where the second map is the identity on Z and restricts to the projection map 

I~d ~ W. The action of GL,(q)xGL,,(q) extends further to H and H, central- 

izing Z and commuting with the maps in the above central extension. 

The map/-) ---* H induces a bijection between the pl-elements (i.e., elements of 

order prime to p) of/') and of H (because the kernel is a central p-group). Under 

this bijection, each r-tuple 

h =  ([0,~l],[w,,(2l,...,[w,it+l,(~]) q H" 

corresponds to some r-tuple h E ~r .  This correspondence commutes with the 

braiding action of Br on these r-tuples. 

Now take specifically wi = (ci,ei) for i = 1, ...,n, and 

n t i t  

i=1 i=1 

with A1,...,A, as in Lemma 1. Consider the maps P' ,P"  : H = W x ' Z  

G = V x 'Z,  where P '  (resp., P")  sends [w, (i] to [w', (i] (resp., [w", ¢i-'])" Under 

these maps, the above r-tuple h E H r is mapped to the r-tuples F(E,,, () and 

F(E,,, (-1), respectively (where E,, denotes the identity matrix in GL,,(q), and 

F(B, () is the r-tuple from Lemnm 1). In particular, it follows by Lemma 1 that 

the product of the entries of the r-tuple h is 1. Hence for the lifted r-tuple h the 

corresponding product is some dement of the kernel V ® V that we denote by II. 

CLAIM 1: II is invarim2t under ~q ® @q-,. 

Proof: Consider the map ~¢ x ~ - 1  : Br(~) ---+ GL,,(q)xGLn(q). By the above, 

this lifts to an action of Br(() on H and/-); for Q E Br((), denote the induced 

automorphism of H and H by q'H(Q) and q~(Q),  respectively. It follows that 

c k ( 0 )  restricts to the map ® ¢¢-' (0) on V ® V. 

Each Q E B~((), in its braiding action, sends the r-tuple F(En, () to F(RJ¢(Q), 

(), and sends F(E,It,(-~) to F(~¢-~(Q),(-~) (this is immediate from the def- 

initions in §1.1). Via the maps P',  P"  it follows that Q, in its braiding action, 

sends h to the r-tuple obtained by applying ~H(Q) to the entries of h. Then Q, 

in its braiding action, also sends h to the r-tuple obtained by applying R'B(Q) 

to the entries of [1. This holds because the map H ---+ H is a bijection on the 

p'-elements, and conmmtes with the braiding action of Q as well as with the 

action through ~ ,  and R'H. 
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Since the product of the entries of an v-tuple is invariant under the braiding 

action, it follows that II = (I)/:t(Q)- II = (I)¢(Q) ® (I)¢-, (Q) .  II. This proves 

Claim 1. | 

Consider the natural isomorphisms 

V ® V ~ ( V ® V ) * * = ( V * ® V * ) * ~  {V* x V * ~ F q  bilinear} 

where * denotes Fq-dual. Via these isomorphisnls, the invariant II E V ® V yields 

a dual pairing between (I)~ and (I)~_t (in the sense of Proposition 2). Because A¢ 

is irreducible, this pairing is non-degenerate if YI # 0. Then (I)~ is dual to ff~_~, 

hence is equivalent to (I)¢-~. Thus Proposition 2 now follows from 

CLAIM 2: II # 0. 

Proof." Recall that the wi occurring in the r-tuple h were chosen such that 
I I I  l n I I  

= -  i=1 ) iei, W i W i -~ ei  for i 1 , . . . , n ,  a n d  = E n = l  A ~ l e i .  ~ Wn+ 1 W n + l  
l w l t  Set X0 = w n + l ®  n+l" 

The element [wi, (i+1] E H lifts to a unique p~-element [~i, (i+1] E /~, for 

i = 1, . . . ,n + 1. Write Wi in the form (wi, xi) with Xi E V ® V .  Then Xi E< 

w~ ® w~' > because (wi, (i+1) is a p'-element. Now we compute: 

--1 --1 
= . . . ¢ , _ , w l , X , ) - - .  

Omitting the first coordinate (which gives 0), we continue a.s follows: 

II = X1 + " '"  "~ Xl,+l "4- cvl  ~ e u ® ep -- w n +  1 ® W n +  1 

l_<u<#_<n 

= X ~ + ' " + X , , +  y]~ c,,# e, ,®e# + X , , + 1 - X o  
l < v < p < n  

for certain non-zero evil E Fq. 

Note Xn+l - X0 E< X0 > from the above. If X,,+l - X0 = 0 then clearly 

II ~ 0, because Xi E< ei ® ei > for i = 1,..., n. If Xn+l - X0 ¢ 0, then e2 ® el 

occurs with non-zero coefficient in II, because it occurs with non-zero coefficient 

in X0 = (~)~iei) ® (E)~-(1 ei). Hence II ~ 0 in either case. This proves Claim 

2. 
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§1.5. (I)¢ DETERMINES (. 

In the following we need some geometrical laalguage. The projective space of 

rank n over the finite field Fq, denoted P"-~ (q), is the lattice of all (non-trivial) 

subspaces of the vector space Fq. The 1-spaces are called points. 

LEMMA 7: Set P1 = <  el > (= the center of B1), and P2 = <  e2 > (= the 

center of ff¢(Q2Q2~Q21), el. (5)). Further, Q~ (resp., Q2) is the intersection of 

V2 with the axis ofBa (resp., B2 ). If (1G ~ 1 then the cross ratio of the 4 points 

Qa, P2, P1, BI(P2) is ({-I(~1, mad the cross ratio of the 4 points Q1, P2, P1, Q2 

is: 

Proof." We use that for any two lineaa'ly independent vectors a, b and non-zero 

scalars p ,u  the cross ratio of the 4 points < a >, < a + b  >, < b > and 

< pa + ub > is p - lu .  We omit the details (straightforward from Lemma 3). 
| 

Let Ba,2 be the normal subgroup of Br generated by the conjugates of Q~ and 

Q]. Let (Ih,2(() be the restriction of (I)¢ to B1,2. 

COROLLARY 4: Suppose ( = ((1,..., (r) is another r-tuple with the properties 

o f (  from Theorem 1. Assume that ~1,2(~) is equivalent to (Ih,2(() O.e., there is 

T 6 GL,(q) suM2 that ~¢(O) = T g2¢(Q) T -~ for all Q 6 B1,2). Then ( = (. 

Proof: Since B, = (I,¢(O~) and (I)¢(O~) have the same eigenvalues, we get 

(1(2 = (1(2 (Lemma 3). From (5) it follows that if (Ih,2(() and (Ih,2(() are 

equivalent, then also (Ih,2('~() and (Ih,2('~() are equivalent, for each ~r E St. It 
~ ~ 

follows that (i(1 = (i(i for all i ¢ j .  

If (i(1 = 1 for a l l i  ¢ j then ( =  ( - 1 , . . . , - 1 )  = (. Thus we may assume 

(1(2 ~ 1. Since T preserves cross ratios, it now follows from Lemma 7 that 

(a = (a. Then ( = ( by the above. II 

COROLLARY 5: The following are equivalent: 

(i) A leaves a non-degenerate bilinear (resp., hermitian) form on V invariant. 

(ii) ~¢(B12) leaves a non-degenerate bilinear (resp., hermitian) form on V 

invariant. 

(iii) We have ( = ( -1 ,  . . . , -1)  (resp., q = qo 2 is a square, and all (, have norm 

I over  ffqo)" 
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l_f n > 2 then it suftlces to assume in (ii) that ~(~1,2) leaves the form invariant 

up to scalar multiples. 

Proof." By Corollary 3, (iii) implies (i). Further (i) implies (ii) trivially. 

Now we show that (ii) implies (iii). If the invariant form is bilinear, then ~1,2(() 

is equivalent to its dual. Hence ¢1,2(() is equivalent to ~1,2((-~) (Proposition 

2). It follows that ( = ¢-1, hence ( = ( -1 ,  . . . , -1)  (Corollary 4). 

Now assume q is a square. If the invariant form is hermitian, then ~1,2(¢) 

is dual to ~,2(~) .  (Notation as in the proof of Corollary 3). Hence ~1,2(~) is 

equivalent to ~1,2((-1) (Proposition 2), and so ~ = (-~ (Corollary 4). Thus the 

(i are as in (iii). This proves that (ii) implies (iii). 

It remains to prove the last assertion in Corollary 5. For this it suffices to show 

that the given form f ,  invariant under ~¢(B1,2) up to scalar multiples, is actually 

invariant. We need only show that f is invariant under all perspectivities P in 

R}¢(B1,2), since ~¢(B~,2) is generated by perspectivities (clear from its definition 

and (5)). But f does not vanish on the axis of P ,  since n > 2 and the axis 

is a hyperplane. Thus P cannot transforln f into a non-trivial scalar multiple 

(because P acts as identity on its axis). Hence P leaves f invariant, as claimed. 
| 

We derive another corollary that we need in the next section. First we return 

for a moment to the set-up of §1.2. Fk'om the definitions it follows immediately 

that 

e~(~(q)() = O -1 B~(¢) Q 

for each Q E B~. Thus (5) yields for ( '  = ~(Q)( : 

(6) = ¢(0,  ()- '  ¢(0,  O. 

Since t¢ : Br --* Sr is sudective, it follows that for any ( '  = '~( (Tr E S~) the 

group A¢, is conjugate A¢. 

COROLLARY 6: Suppose  n > 2, and A leaves a subspace P = pn- l (q , )  of 

p n - l ( q )  invariant. Then  q = q' and P = p, , - l (q) .  

Proo£" If ( i ( j  = 1 f o r  a l l i  # j then ( = ( - 1 , . . . , - 1 ) ,  h e n c e q i s  a p r i m e  

(Corollary 3) and then trivially q = q'. Thus we may assume (1 (2 # 1 (using 

(6)). 
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The center and axis of each perspectivity from A lie in P (since n > 2). The 

cross ratio of any 4 collinear points of P lies in F¢.  These two facts, together 

with Lemma 7, yield that ¢1(2, and then also ~ ,  lies in F¢.  Using (6), it follows 

that all (i lie in Fq,. Hence q = q' (since the ¢i generate Fq). II 

§1.6. THE CASE n > 2. 

A perspectivity is called a transvection if the center lies on the axis; otherwise 

it is called a homology. The image of such an element in PGLn(q) is again called 

a homology etc.. 

We use the following result of Wagner [Wa]. For simplicity, we state the result 

only under the additional hypothesis that the group leaves no proper subspace 

of p n - l ( q )  invariant. 

THEOREM (Wagner): Suppose ~, is a primitive subgroup of PGL,(q) ,  n > 2, 

that contains homologies of  order > 2. Assume ~ leaves no proper subspace 

p ~ pn- l (q , )  o f p n - l ( q )  invariant. Then either q is a square and 

PSUn(q) < • <_ PUn(q), 

o r  

PSLn(q) < • _< PGLn(q) 

or n = 3, q is odd, ~ ~- PUa(4), or n -= 4, q is odd, ~ ~- PSU4(4). /.n the two 

exceptional cases, A contains no homology of  order > 3. 

Now we can prove: 

PROPOSITION 3: Suppose n > 2. Exclude the two exceptional cases from Wag- 

net 's  theorem (in the case n _< 4). Then the following holds: 

(b) I f  q = q2 o is a square and all (i have norm 1 over Fqo , then 

su,,(q) < :'c -< U,(q). 

(c) I f (  is not as in (b), and ¢ # ( -1 , . . . , - 1 ) ,  then 

SLn(q) _< A¢ _< GLn(q). 

Proof." From (6) and Lemma 3 we see that A contains a non-involutory homology 

unless (i~j = 4"1 for all i # j .  The latter implies (~(] = 1 for all i # j ,  hence 

( I  . . . . .  (2 = -4-1. If this value is +1, then ( = ( -1 ,  . . . , -1) ,  a case that 
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is not under consideration (see Corollary 3; in this case, actually A contains 

no homologies). If ~12 . . . . .  (2 = -1  (and p ¢ 2), then we may assume 

= = (by (6)), hence a contains a homology of order 4, n. ely  1(0 

(Lemma 2). 

Hence we may assume A contains a non-involutory homology. Together with 

Corollary 2 and Corollary 6, it follows that the image/~ of A in PGL,(q) sat- 

isfies the hypothesis of Wagner's theorem. Since we excluded the exceptional 

cases, Wagner's theorem implies that A either contains PSL,(q), or lies between 

PSU.(q) and PUn(q). Thus the group AF; contains SL.(q) or SU.(q). Since 

the latter groups are generated by transvections, we have even SLn(q) or SU,(q) 

contained in A. 

Assume now that ( is as in (b), hence A _(Un(q) (Corollary 3). Then A 

cannot contain SLn(q), hence SU.(q) S A. This proves (b). 

Finally, assume A does not contain SL,(q). Then by the above, ~ lies between 

PSU,(q) and PUn(q). It follows that A preserves the corresponding hermitian 

form up to scalar multiples. Then ( is as in (b) (by Corollary 5). This proves 

(c). R 

LEMMA 8: If one of the exceptional cases from Wagner's Theorem occurs/'or the 

image of A¢ in PGLn(q), then p > 3, and ( is as in (E3) or (E4) from Theorem 

1. 

Proof: Assume one of the exceptional cases occurs. Then q is odd, and by [Wa, 

Lemma 3.1] the group A contains no transveetion. This implies (i(i ~ 1 for all 

i ~ j (Lemma 3 and (6)). 

Since A contains no homology of order > 3, we have (i(j of multiplieative 

order _~ 3 for all i ~ j (Lemma 3 and (6)); further, if (i = (i for i ~ j then 

- ( i  has order _~ 3 (Lemma 2 and (6)). Thus clearly p ~ 3. Let ~ be a primitive 

third root of unity in Fq. We get for all i ~ j: 

(i) ~i(j equals--1 o r  ~'4"I. 

( i i ) / f  (i = Q then (i = _ ~ 1 .  

By (i) the ~i's can take at most 4 different values. Because r > 5 it follows that 

they cannot be all distinct. Thus by (ii) we may assume ~1 = -e.  (Interchanging 

and ~-1 if necessary). Then (i) implies ~i E {-~, ~-1, -1} for all i. Thereby, 

, - I  and -1  cannot occur both (by (i)), and each of them occurs at most once (by 

(ii)). Thus after re-labelling we get ~1 . . . . .  ~r-1 = - '  and ~r E { - , ,  , - 1 - 1 } .  
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Since ~ x ' " ~ r = l w e m u s t h a v e  ~ r = e  -1 i f r = 5 ,  and ( r = - e  if r = 6 .  This 

proves the claim. | 

The converse to Lemma 8 has been checked by computer (calculating over 

the integers in the field of third roots of unity). Together with Proposition 3, 

Corollary 3 and Corollary 5, this completes the proof of Theorem 1 in the case 

n > 2 .  

§1.7. THE CASE n = 2. 

In this section we assume n = 2 (hence r = 4). Let /~  denote the image of A 

in PGL2(q). Let Fq be an algebraic closure of Fq. 

If (i¢i = - 1  for all i # j then p # 2 and (1 = . . . .  (4 = v/-~i'. In this case 

one finds that /~ ~ $4, hence case (E2) of Theorem 1 occurs. Now assume not 

all ¢i equal v/'L-T. Then without loss of generality, (1(~ # - 1  (by (6)). We can 

further assume ~2(3 # - 1  unless (x = (2 = _(~-1 = _(~-a; this exceptional case 

gives (El)  of Theorem 1. 

Assume now ¢a~2 # - 1  # (2(3. Since (1(2 # --1 we have B~ # 1, hence 

B~ is a perspectivity with the same center and axis as Bx (see Lemma 3). Thus 

B~ fixes the same subspaces of V ® ~q as B1. Analogously, we get the same for 

B2. Since F = <  B1,B2 > acts absolutely irreducibly in V (Proposition 1), it 
2 2 follows that the same holds for < B 1 , B 2 >. Hence A acts primitively in V ® Fg. 

By Dickson's list of subgroups of PSL2(q) (see [Wa, Appendix]) it follows that A 

is A4, $4, As, PSL2(qo) or PGL2(qo), where q is a power of qo. (Note that A < 
PSL2(q2).) 

Case 1: A is A4, $4 or As. 

Then all perspectivities in A have order <_ 5, hence all ~iQ, i # j ,  have multi- 

plicative order _< 5. Thus, if p > 5 then A cannot contain non-trivial unipotent 

elements (that have p-power order), hence ~iQ ~ 1 for all i ~ j by Lemma 3 

(and (5)). Hence we are in case (E2) of Theorem 1. 

Case 2: A is (conjugate to) PSL2(qo) or PGL2(q0). 

The fixed points in P](Fq)  of any element of PGL2(q0) are rational over Fq]. It 

follows that if ~, lies in a conjugate of PGL2(q0), then the axes and centers of 

the perspectivities in A are points of PX(Fq) any four of which have their cross 

ratio in F~02. By (6) and Lemma 7 it follows that all (i lie in F¢02 , hence q0 = q 

or q0 ~ = q. 
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We have shown that A is PSL2(q0) or PGL2(q0), with q0 = q or q2 = q. 

This proves (d) of Theorem 1. The first assertions in (a) and (b) of Theorem 

1 were proved in Corollary 5. Corollary 3 proves the rest of (a). Now assume 

¢ is as in (b), hence A < V2(q). Then certainly qo # q, hence q0 2 = q. Thus 

A is a subgroup of U2(q) mapping onto PSU2(q) (-~ PSL2(qo)) or PU2(q) 

(~- PGL2(qo)). It follows that A contains SU2(q) (since SV2(q) (-~ SL2(qo)) 

is generated by transvections). This proves (b) of Theorem 1. The proof of 

Theorem 1 is now complete. 

§2. Galois realizations for A¢ 

§ 2 . 1 .  REALIZATIONS FOR GLn(q). 

In recent approaches to the Inverse Galois Problem, one tries to realize finite 

groups as Galois groups of regular extensions L/Q(x) (where "regular" means 

that Q is algebraically closed in L). If a finite group H is isomorphic to such 

a Galois group, we say for short that H o c c u r s  r e g u l a r l y  o v e r  Q. In IV1, 

Theorem 2 and 3] general criteria for realizing groups in this way (over Q and 

other number fields) are given. Applying these criteria to the group G = V x a 

Z (from §1.2), together with the r-tuple of conjuga~y classes represented by 

(1, ..., (r, we obtain the following Theorem 2. 

Let ( i , . . . , (r  be generators of the finite field Fq satisfying (1...(r = 1 and 

0 ~ (i ~ 1 for all i. Set ( = ( (1 ,  . . . ,  ( r ) ,  Z =¢~ ¢1, .--, ( r  ~> a n d  ~ = r - -  2.  

Suppose n _> 2. Recall that ~ is called rational if ~{", . . . , (~ is a permutation of 

~1, ...,(~ for each integer m that is prime to q - 1. Let A¢ be the image of the 

homomorphism ~ :  Br(~) ~ GL,(q). 

THEOREM 2 ([Vl]): Let S be a subgroup of F~ that is either trivial or contains 

Z. I f  ( is rational, and A~S = GL,(q), then the group G L , ( q ) / S  occurs 

regularly over Q. 

From Theorem 1, it is easy to give conditions on n and q that imply the 

existence of rational ( with AcE = GL,(q). We give some reasonable conditions 

like this in the following Lemma. As one sees from the proof, these conditions 

could easily be further refined to cover more groups GL,(q) and PGL,(q). Let 

denote Euler's ~-function, and let again ~¢ be the image of A¢ in PGL,(q). 

LEMMA 9: (i) Assume q > 4 is either odd or a power of 4. I f  n is even and 

n >__ ~p(q - 1) then there is rational ~ with A¢ = GL.(q). 
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(ii) Assume q = p is a prime, and (n, p - 1) = 2. If  p -- 7 (rood 12) or p =_ 5 

(rood 8) then there is rational ~ with ~x~ = PGL,(p) .  

Proof'. (i) Choose (1 such that - (1  generates the multiplieative group F;. Let 

~1, .... , ( ,  be the generators of the cyclic group < (1 >. Note s < ~(q - 1) < n = 

r - 2. Thus there are at least 2 more (i's to choose: Take them to be - 1  if q is 

odd, and elements of order 3 if q is a power of 4 (with eazh of the two elements 

of order 3 occurring the same number of times). This yields a rational r-tuple 

( = ((1, .... , (r) with the properties given before Theorem 2. 

It remains to show that A¢ = GLn(q). By Lemma 3 (and (5)), A¢ contains 

an element of determinant (~(1 = - (1  (= a generator of F~) if q is odd. If q 

* (1(1 with i , j  is even, the group < ~1 > =  Fq is cyclic of odd order~ hence the i J 

prime to q - 1, i ~ j (rood q - 1), generate < ~1 >; further, these ~x~li J occur 

as determinants of elements of A¢ (again by Lemma 3 and (5)). It follows that 

det: A~ ~ F~ is surjective. 

Clearly, ( is not as in (a), (b), (E4),(E5) of Theorem 1. Hence if n > 2 then 

A¢ contains SLn(q) (by Theorem 1). Thus A¢ = GLn(q) (by the previous 

paragraph). 

If n = 2 then our hypothesis implies q = 5; then the unipotent elements of 

GLn(q) have order 5, and A¢ contains such an element by Lemma 3. Thus ~¢  

contains PSLn(q) = PSL2(5) -~ As, either by (d) or (E2) of Theorem 1. Hence 

A¢ contains SL2(5), and the claim follows as above. 

(ii) If p - 7 (rood 12) (resp., p =- 5 (rood 8) ), let (1 be an element of order 3 

(resp., 4), let (2 = (~-1 , and take the remaining (i's to be - 1 .  Then clearly ( is 

a rational r-tuple with the properties given before Theorem 2. 

We may exclude the case n = 2, p = 5 (since this is covered by (i)). Then ( is 

not as in (a),(b), (E2)-(E5) of Theorem 1, hence &¢ contains PSL~(p). Further, 

A¢ contains an element of determinant - ( i  (by Lemma 3). But -~1 is a non- 

square in ~;  in either case. Hence 2x¢ = PGLn(p). (Note that PSLn(p) has 

index 2 in PGL,,(p) because ( n , p -  1) = 2 ). | 

The case (i) allows to improve Theorem 1 of [VI]. 

COROLLARY A: ] f n  and q are as m (i) (reap. (ii)) of the above Lernroa, then the 

group GL~(q) (reap., PGLn(q) ) occurs regularly over Q. In particular, f f  q > 4 

is a power of 4, and n > ~(q - 1) is even and prime to q - 1, then the simple 

group PSLn(q) = PGLn(q) occurs regttlarly over Q. 
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Examples: The group GLn(5) occurs regularly over Q for all even n > 2. Also, 

GLn(16) for all even n ~_ 6. (The proof of Lemma 9 shows that for even q actually 

the bound n > ~o(q - 1) - 2 works). The latter groups modulo their center axe 

simple if n is prime to 15. 

§2.2. REALIZATIONS OF UNITARY GROUPS. 

In forthcoming work [V2], we will generalize Theorem 2 as follows: 

THEOREM 2': Let S be a subgroup of Fq. If  ~ is rational, and A ¢ S / S  is 

self-normalizing in CLn(q)/S, then A¢S/ S occurs r e g a l l y  over Q. 

Since the group PUn(q) is self-normMizing in PGLn(q), we get Galois realiza- 

tions for PUn(q) under similar conditions on n and q as in Corollary A. First we 

need the analogue of Lemma 9. 

LEMMA 10: (i) Let q = p2, with p a prime, s a positive integer. Assume either 

q or s is odd. If  n ~_ 4 is even and n _~ ~(V/q+ 1), then there is rational ~ with 

= Vn(q). 
(ii) A s s u m e q = p  2,and ( n , p + l ) = 2 .  / f  p = 5 ( m o d 1 2 )  or p = 3 ( m o d S )  

then there is rational ~ with ~¢ = PUn(p2). 

Proof." The construction is analogous to that in Lemma 9. 

(i) Choose (1 such that - (1  generates the group Sq of elements of FI that  have 

norm 1 over Fvq. Let again (1, .... , ( ,  be the generators of the cyclic group < ~1 >. 

Note s < qo(V~+ 1) < n = r - 2. Take the remaining ~i's as in Lemma 9. Then 

is a rational r-tuple with all (i of norm 1 over Fv, ~. Thus ease (b) of Theorem 

1 occurs. As in Lemma 9 one sees that det: A¢ --, Sq is surjeetive. This implies 

A~ = V . ( q ) .  

(ii) Choose ¢ as in the proof of Lemma 9(ii). Then ¢ is again a rational r-tuple 

with the properties given before Theorem 2. Further, ease (b) of Theorem 1 

occurs. (The case n = 2, p = 5 is done as in Lemma 9.) 

As in Lemma 9, A¢ contains an element of determinant -~1. But -~1 is a 

non-square in Sq (since Sq has order p + 1). Hence he = PU,(p2). (Note that 

PSUn(p z) has index 2 in PUn(p 2) because (n,p + 1) = 2 ). II 

COROLLARY B: / f  n and q are as in (i) or (ii) of Lemma 10, then the group 

PUn(q) occurs reguIarly over Q. In par~icuIar, f fq  = 2 2" with odd s, and n > 4 

is even, n > ~(v /~+l )  and n is prime to v ~ + l ,  then the simple group PSUn(q) = 

PUn(q) occurs regularly over Q. 



Vol. 82, 1993 GALOIS REALIZATIONS 427 

Example: The group PU=(4) occurs regularly over Q for all even n > 4. This 

group is simple if n is not divisible by 3. 

Remark: In view of the isomorphism PU2(p 2) - PGL2(p), the cases (ii) of 

Corollary A and B imply the following: The group PGL2(p) occurs regularly 

over Q for all primes p with p ~ +1 (rood 24). This was shown in [MM] using 

the rigidity method. It is quite remarkable that  we get the same congruence 

condition here, although the present method is quite different. 
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